Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hong-Qing Hao ${ }^{\text {a }}$ and Hui Zhang ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Department of Chemistry, Xiamen University, Xiamen 361005, People's Republic of China, and ${ }^{\mathbf{b}}$ State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen 361005, People's Republic of China

Correspondence e-mail:
huizhang@jingxian.xmu.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.079$
$w R$ factor $=0.230$
Data-to-parameter ratio $=15.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

N, N^{\prime}-Bis[4-(dimethylamino)benzylidene]-ethane-1,2-diamine

The title compound, $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{4}$, shows a distinctly V-shaped structure. In the crystal structure, parallel rings and short intermolecular contacts indicate the presence of aromatic stacking interactions. A twofold rotation axis passes through the mid-point of the central $\mathrm{C}-\mathrm{C}$ bond.

Comment

The crystal structure of N, N^{\prime}-bis(4-(dimethylamino)benzyl-idene)-1,2-diaminocyclohexane has been reported previously (Jones et al., 1998); we report here the crystal structure of N, N^{\prime}-bis[4-(dimethylamino)benzylidene]-1,2-diaminoethane, (I). The molecular structure of (I) is illustrated in Fig.1, with selected bond lengths and bond angles listed in Table 1.

(I)

The molecular structure of (I) exhibits a distinct V shape. A twofold rotation axis passes through the mid-point of the $\mathrm{C} 10-\mathrm{C} 10^{\mathrm{i}}$ bond (symmetry code as in Table 1). The $\mathrm{C} 9-\mathrm{N} 2$ bond length of 1.251 (4) \AA is consistent with double-bond character. Other bond lengths and angles in (I) lie within the expected ranges. In the molecular packing, the distance between parallel rings is $3.597 \AA$, which indicates the presence of aromatic stacking interactions.

Experimental

A mixture of 1,2-diaminoethane (1 mmol) and 4-dimethylaminobenzaldehyde (2 mol) in ethanol (40 ml) was refluxed for 3 h and then cooled to room temperature with stirring. The solution was filtered and concentrated to dryness. The resulting residue was washed with ethanol and dried in a vacuum. The yellow product was dissolved in dichloromethane and the solution was evaporated slowly in a dark place at room temperature. After two weeks, red block crystals were obtained. The overall yield was 75%. CHN elemental analysis on the red platelets: found (calculated) for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{4}$ (\%): C 74.35 (74.50), H 8.10 (8.13), N 17.55 (17.38). IR (KBr): 3423, 3030, $1645,1630,1450,1380,1280,1115,850,803,771,680,637 \mathrm{~cm}^{-1}$.

Received 21 October 2005 Accepted 14 November 2005 Online 26 November 2005

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{4}$
$M_{r}=322.45$
Monoclinic, $C 2 / c$
$a=24.151(10) \AA$
$b=6.503(3) \AA$
$c=12.390(5) \AA$
$\beta=114.869(8)^{\circ}$
$V=1765.5(12) \AA^{3}$
$Z=4$

$D_{x}=1.213 \mathrm{Mg} \mathrm{m}^{-3}$
 Mo K α radiation

Cell parameters from 1200
reflections
$\theta=3.2-25^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Plate, red
$0.31 \times 0.30 \times 0.11 \mathrm{~mm}$

Data collection

Bruker APEX diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.978, T_{\text {max }}=0.992$
4624 measured reflections
1721 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.079$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1093 P)^{2}\right.$
$+2.2949 \mathrm{P}]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.32$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.27 \mathrm{e} \AA^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 9-\mathrm{N} 2$	$1.251(4)$	$\mathrm{C} 1-\mathrm{N} 1$	$1.432(4)$
$\mathrm{C} 10-\mathrm{N} 2$	$1.440(3)$	$\mathrm{C} 2-\mathrm{N} 1$	$1.428(4)$
$\mathrm{C} 10-\mathrm{C} 10^{\mathrm{i}}$	$1.506(6)$		
$\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 10^{\mathrm{i}}$	$111.5(2)$	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1$	$120.9(3)$
$\mathrm{C} 9-\mathrm{N} 2-\mathrm{C} 10$	$116.6(2)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1$	$117.3(3)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2$	$121.2(2)$		
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 9-\mathrm{N} 2$	$177.8(3)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1$	$-178.3(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 9-\mathrm{N} 2$	$-2.7(4)$	$\mathrm{C} 10-\mathrm{C} 10^{\mathrm{i}}-\mathrm{N} 2-\mathrm{C} 9$	$-130.5(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2$	$-7.6(4)$		
Symmetry code: $(\mathrm{i})-x+1, y,-z+\frac{3}{2}$.			

The aromatic and aliphatic H atoms were placed at calculated positions and refined using the riding-model approximation, with $\mathrm{C}-$ $\mathrm{H}=0.93-0.97 \AA$ and $U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve

Figure 1
ORTEPII (Johnson, 1976) plot of (I). Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) $-x+1, y,-z+\frac{3}{2}$.]
structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Science Foundation of China (20171037, 20373056) and Fujian Province Science Foundation of China (2002 F016, C0020001).

References

Bruker (2001). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Jones. V. A., Sriprang, S., Thornton-Pett, M. \& Kee, T. P. (1998). J. Organomet. Chem. pp. 199-218.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Gottingen, Germany.

